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Computer-Aided Evaluation of Screening
Mammograms Based on Local Texture Models
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Abstract—We propose a new approach to diagnostic evaluation
of screening mammograms based on local statistical texture
models. The local evaluation tool has the form of a multivariate
probability density of gray levels in a suitably chosen search
window. First, the density function in the form of Gaussian
mixture is estimated from data obtained by scanning of the mam-
mogram with the search window. Then we evaluate the estimated
mixture at each position and display the corresponding log-like-
lihood value as a gray level at the window center. The resulting
log-likelihood image closely correlates with the structural details
of the original mammogram and emphasizes unusual places. We
assume that, in parallel use, the log-likelihood image may provide
additional information to facilitate the identification of malignant
lesions as untypical locations of high novelty.

Index Terms—Gaussian mixture, local statistical model, log-like-
lihood image, screening mammography, texture information.

I. INTRODUCTION

B REAST cancer is one of the most common forms of
cancer in women and also one of the most frequent

causes of cancer death. Approximately one out of ten women
could develop breast cancer during her lifetime [1]. It appears
that, at present, the only effective tool to decrease the high
mortality rates is the early detection of malignant abnormali-
ties. For this reason, numerous screening programs have been
initiated in the last few years.

Evaluation of screening mammograms is known to be diffi-
cult. Mammograms are complex in appearance and the signs of
early breast cancer are often small or subtle, embedded in a com-
plex background and showing great diversity in shape, size, and
location. The incidence of malignant abnormalities in screening
mammograms is only about 0.1%–0.3% [1]. In the case of sus-
pect abnormalities, the radiologists can recommend additional
imaging or follow-up mammograms and about 5%–10% of the
findings are proposed for surgical verification of suspect tissue
by biopsy [3], [4]. Many biopsies (about 60%–80%) expectedly
result in benign diagnoses as false positive [5]. On the other
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hand, retrospective analyses report relatively large false nega-
tive evaluation rates of about 10%–20% [5], [7].

The total number of screening mammograms evaluated
worldwide in one year may be in the order of millions. Thus,
even a small decrease in false negative evaluation rates may
save many lives in the final effect. Similarly, the decrease
in false positive biopsy rates may help to avoid unnecessary
physical trauma and emotional stress to many women.

II. COMPUTER-AIDED SCREENING FOR MAMMOGRAPHY

Mammographic screening programs produce large number of
mammograms to be routinely evaluated under strong reliability
requirements. Double reading may increase the sensitivity of
radiologists by 5%–15% but as a standard of care, it appears to
be too resource demanding [4]. In the last decade, there has been
an increasing effort to help radiologists by introducing different
computer-aided decision-supporting systems.

Unfortunately, in screening mammography, the diagnosis
usually includes a substantial descriptive part concerning the
location and form of the lesion, and, therefore, it cannot be
treated simply as a standard problem of statistical classification
into mutually exclusive classes [16]. According to the classi-
fication terminology in [2], the malignant abnormalities may
be essentially of two categories: “calcifications” or “masses.”
The calcifications may be of different types (e.g., punctate,
amorphous, pleomorphic, round and regular, vascular, coarse,
dystrophic) and may differ in distribution (e.g., clustered, linear,
segmented, regional, diffusely scattered). Masses may also have
different shapes (e.g., round, oval, lobulated, irregular, tubular)
and margins (e.g., circumscribed, microlobulated, obscured,
ill-defined, spiculated), may differ in size, location, and orien-
tation, and may have different backgrounds. In addition, there
is a high natural variability of normal mammograms and a
“positional” noise due to manual placement of the breast by the
radiographer. For all these reasons, it would be nearly impos-
sible to specify some suitable diagnostic classes which could
be characterized by class-conditional probability distributions
of a reasonable dimensionality.

To create a more standard classification problem the com-
puter-aided detection (CADe) systems usually assume a small
region of interest (ROI) as a subject of recognition. However, in
view of the above-mentioned high diversity of malignant abnor-
malities and natural variability of normal mammograms, the ap-
plication of the available pattern recognition methods remains to
be a difficult task. For this reason, the CADe systems just only
direct the attention of the radiologists toward potential abnor-
malities. Typical CADe systems use algorithms to mark poten-
tially suspicious areas by prompts and then, with the information
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provided by the CADe system, the radiologist makes the final
decision.

In literature, there are many CADe approaches based on dif-
ferent principles (see, e.g., [5]–[7] for extensive references) but,
as it appears, the detection quality of the present CADe algo-
rithms is not comparable with expert radiologists [9]. The latest
CADe systems achieve sensitivity of about 80%–90% with re-
spect to different diagnoses but the false positive rates of placing
prompts are also high, usually in units per image [3], [8]. It
should be noted that, because of the low incidence of malignant
findings (0.1%–0.3%), standard CADe systems generate hun-
dreds or even thousands of false positive prompts in order to
correctly mark one malignant lesion. Nevertheless, according
to different studies [3], [10]–[12], CADe can improve breast
cancer detection by more than 20%.

In the last few years, there has been an increasing effort to
utilize textural information for the detection of suspicious re-
gions in mammograms. The textural approaches frequently refer
to the renowned paper by Haralick [13], who introduced the
concept of gray-level co-occurrence matrix (GCM). Formally,
GCM can be viewed as a 2-D distribution of gray levels of two
pixels in a specific mutual position defined by distance and di-
rection. We recall that the underlying 2-D probability distribu-
tion describes the statistical relation between the two pixels in
full generality. However, the size of GCM, which depends on the
number of gray levels, may be very large and, therefore, unsuit-
able as a feature set. For this reason, different texture features
like entropy, second moment, difference moment, inverse differ-
ence moment, etc. (cf. [14]), have been computed for differently
chosen GCM in order to make the final classification feasible
[8]. Unfortunately, in this way, the resulting features express
only simple global properties of the respective GCM and the re-
lated statistical information is almost completely lost. A more
general approach is to use statistical texture models as local
evaluation tools. In view of the fact that most mammograms
are pathology free, it has been proposed to perform CADe via
novelty detection [15]–[17]. With this aim, a generative statis-
tical model of mammographic appearance has been developed
which produces synthetic mammograms of remarkable quality
[17]–[19]. The ultimate goal is to model entire pathology-free
mammograms in order to perform abnormality detection as a
novelty (outlier) detection task.

In this paper, we propose preprocessing of screening mam-
mograms by means of local texture models with the aim to
emphasize diagnostically important details. First, we estimate
local statistical texture model as a joint probability density of
gray levels in a suitably chosen search window.1 In the second
phase, we compute the estimated density at each position of the
window and display the corresponding log-likelihood value as a
gray level at the central reference pixel of the window. The re-
sulting “log-likelihood image” has the same resolution as the
original mammogram, closely correlates with the underlying
structural details and maps the “typicality” or “novelty” of dif-
ferent textural parts.

1Note that, within the scope of the search window, any GCM can be obtained
as a 2-D marginal of the local statistical model.

We assume that, in parallel use, the log-likelihood image may
provide additional information to facilitate the identification of
malignant lesions as untypical locations of high novelty. In the
present form, the method does not include any decision making,
the diagnostic interpretation of the log-likelihood image is com-
pletely a domain of radiologists. However, as the approach is
new, there is no diagnostic experience available. In order to
clarify the basic features of the log-likelihood image, we explain
the computational details of the main “detection” mechanisms
in the following sections. The log-likelihood image is a purely
statistical construct without specific relation to screening mam-
mography. The appearance of the log-likelihood image is totally
different from the original image and, for this reason, we plan
to extend the set of illustrating examples on our website and in
the near future we intend to make our software freely available.

III. LOCAL STATISTICAL MODEL

We have shown in a series of papers that gray-scale textures
can be modeled locally by estimating the joint probability den-
sity of gray levels in a suitably chosen search window [20], [21].
Application of the estimated local statistical model to texture
synthesis provides a unique visual evidence of the informativity
of the model. In the case of a successful texture synthesis (cf.
[22]), we may assume that the underlying mixture density lo-
cally describes all essential statistical properties of the texture.
The main idea of our approach is to apply the local statistical
model to the original image [23]. In this way, we can evaluate
how probable (or typical) are the different locations of the image
appearing in the search window.

A. Gaussian Mixture Model Estimation

We assume a digitized mammogram in the form of a matrix of
discrete variables specifying the gray levels at the corresponding
pixels. Formally, it is irrelevant if the digitized image has been
obtained by scanning screen-film images or by digital mammog-
raphy. We assume that the statistical properties of the image can
be described locally by a joint probability density of gray levels
of a suitably chosen search window. Denoting

as the vector of gray levels of the window in a fixed pixel ar-
rangement, we assume the joint probability density in the
form of a mixture of Gaussian components with diagonal co-
variance matrices [22], [23]

(1)

Here and denote the index
sets of components and variables, respectively, and the mixture
components are defined as products of univariate Gaussian den-
sities

(2)

(3)
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The standard way to compute maximum-likelihood estimates of
the mixture parameters is to use the EM algo-
rithm [22]–[24]. The data set is obtained by pixelwise scan-
ning of the original mammogram with the search window

(4)

The corresponding log-likelihood function

(5)

can be maximized by means of EM iteration equations.
We recall that the conditional independence model (1) does

not imply the assumption of independence of variables. The di-
agonal covariance matrices in mixture components simplify EM
computation essentially while the restrictive effect is less rele-
vant. It can be seen that, with the increasing number of compo-
nents, the product mixture (1) approaches the well known non-
parametric Parzen estimates. In literature, the Gaussian product
mixtures are often applied to normalized data—with zero means
and unity variances. However, such a preprocessing of data is su-
perfluous because Gaussian product mixture density is invariant
with respect to arbitrary linear transform of variables (cf. Sec-
tion IV and Appendix I).

B. Statistical Model of Screening Mammogram

Unlike supervised methods, evaluation of a screening mam-
mogram based on a local statistical model need not be trained
by using other mammograms. The local statistical model is es-
timated for every patient individually from a single mammo-
gram, and, therefore, the method is not confronted with the nat-
ural variability of mammograms. This circumstance is relevant
in view of the extreme diversity of malignant lesions.

To accumulate maximum information in the statistical model,
we prefer as a source the full-field digital mammography images
consisting of two medio-lateral views and two cranio-caudal
views (cf. Fig. 1). In our experiments, we have used the full-
field (four-view) mammograms from the DDSM database of the
University of South Florida [2], which have been obtained by
scanning screen-film images. For the sake of model estimation,
the digitized mammograms have been sub-sampled to the pixel
size of about 0.1 mm. Obviously, the method is applicable to
the two-view digital mammograms (medio-lateral images only)
without any change. To utilize the underlying symmetry, we
apply a mirror transform to the right-hand-side images. In this
way, the structural information from the symmetrical parts is
compatible.

From the computational point of view, the choice of the
search window is of great importance. Concerning the form, a
square-shaped window is practical for texture synthesis [22],
but in the case of evaluation of mammograms, the window
should rather correspond to a circular neighborhood of the
center pixel. The dimension of the estimated density should
be as small as possible, but, on the other hand, the size of the
window should be large enough to capture diagnostically im-
portant details. The choice of the window size is closely related

Fig. 1. Original image with a highlighted malignant lesion: calcification of
pleomorphic type, segmentally distributed, assessment 4, subtlety 1–2 (modified
full-field digital mammogram C-0002-1 from the DDSM database of the Uni-
versity of South Florida, cf. http://marathon.csee.usf.edu/Mammography/Data-
base.html, [2]). The location of malignant lesion is derived from the corre-
sponding overlay file.

to the image resolution. In the case of small pixel size, we
should enlarge the window but the resulting increased dimen-
sion is computationally inconvenient. The global appearance
of the log likelihood image is not essentially influenced by the
window size. Generally, with a shrinking window, the image
becomes more “discontinuous” but without loss of relevant
information. On the other hand the increased window size tends
to smooth out small details (cf. Fig. 3). After extensive exper-
iments, we have chosen as an intuitive compromise a square
window of 13 13 pixels with trimmed corners, assuming the
pixel size of approximately 0.1 mm. The resulting dimension
of data vectors is . Another
window size could appear to be more suitable to emphasize
some specific diagnostic details but the proposed compromise
solution seems to be generally acceptable.

Estimation of a Gaussian mixture in 145-dimensional space
by means of EM algorithm is a specific task since a dimension of
this order is usually considered to be prohibitive. In the case of
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our multidimensional local statistical model, the numerical so-
lution is actually enabled by the assumption of diagonal covari-
ance matrices of Gaussian components (2). The underlying con-
ditional independence model simplifies computation and avoids
difficulties with the potentially ill-conditioned covariance ma-
trices. In this respect, it is advantageous that, estimating the
window-space mixture density from a screening mammogram,
we usually have a large data set obtained
by scanning the image with the search window. The traditional
problem of a proper choice of the number of components and
the initial parameter values is discussed extensively in literature
(cf., e.g., [24]); however, it becomes less relevant in high-di-
mensional spaces and with increasing number of components.
In all our experiments, we have a fixed number of components

and the mixture parameters have been initialized ran-
domly.

IV. LOG-LIKELIHOOD IMAGE

A. Excluding Background Region

Normally, a large part of any mammogram represents dark
(black) background which can be ignored in the model esti-
mation process. Reliable solution to this problem is assumed
to be an important prerequisite of a successful processing of
mammograms [25]. In general, by excluding the background re-
gion, we save computing time and can also expect higher ac-
curacy of mammogram analysis. The problem has become a
subject of serious research in the last decade. Essentially, the
proposed approaches are based on gray-level histogram thresh-
olding combined with gradient analysis, morphological filtering
and/or contour modeling (cf. [25]–[28]).

In this paper, the informative parts of the mammogram are
chosen by computing a selection mask by means of a special
mixture-based procedure. Actually, we use the local statistical
model of Section III in a simplified version having only three
components. We assume the mammogram to contain a relatively
large and homogeneous dark background. In such a case, one
of the components reliably fits the dark gray levels and can be
used to identify the background region. The procedure is rather
robust because each pixel is classified according to the window
neighborhood. Obviously, defects of resulting selection mask
are possible, but, in our experience, they have little influence on
model accuracy.

B. Log-Likelihood Image Computation

Having estimated the parameters we evaluate the mixture
density at each position of the search window for the un-
derlying window-patch vector and display the corresponding
log-likelihood value as gray level at the central ref-
erence pixel of the window. The interpretation of the resulting
log-likelihood image is straightforward. The light gray levels
correspond to the “typical” highly probable parts of the image
and the dark values reflect the less-probable, “untypical” or
“unusual” locations. In this way, the resulting log-likelihood
image should enable the identification of malignant abnormal-
ities as locations of high novelty—exactly in the sense of the
idea proposed by Rose and Taylor and others (cf. [15]–[19]).
Let us remark, however, that the mammograms may contain

Fig. 2. Log-likelihood image for the full-field digital mammogram C-0002-1
from the DDSM database [2]. The log-likelihood image has the same resolution
as the original mammogram. Each pixel value is defined by ���� ����� where ���
is a 145-dimensional vector describing the pixel neighborhood. The malignant
lesion is partly emphasized by contour lines. The log-likelihood image shows
contralateral locations having similar textural properties.

many “normal” structural elements which are rare and, on the
other hand, large or homogeneous malignant lesions could
occur as “not-so-unusual” from the point of view of the local
statistical model.

It is obvious that the window patch is too small to enable a
reliable “pixelwise” identification of malignant lesions. Never-
theless, by definition, the resulting log-likelihood image exactly
correlates with the fine structural details of the original mam-
mogram, has the same resolution and may provide additional
information to facilitate the diagnostic evaluation of screening
mammograms (cf. Figs. 1 and 2). Other examples of log-like-
lihood images in high resolution can be found at our web page
http://www.utia.cas.cz/RO.

C. Detection of Microcalcifications

The presence of microcalcifications is one of the two most
important features of clinically occult breast cancers. Auto-
matic detection of microcalcifications is a frequent subject
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Fig. 3. Impact of window size on the log-likelihood image. Number of components: � � �� � ��, window size in pixels from left to right: 9 � 9, 11 � 11,
13� 13, 15 � 15, 17 � 17, pixel size � � ��� �m (mammogram C-0002-1). With a shrinking window, the image becomes more “discontinuous.”

of different CADe techniques usually based on specifically
designed adaptive thresholding (cf., e.g., [7] for extensive ref-
erences). In the case of log-likelihood image, the sensitivity to
microcalcifications is closely related to the underlying Gaussian
mixture model. The “detection” mechanism is very simple and
illustrative.

Assume that a small micro-calcification causes a light iso-
lated pixel in the mammogram. Then at all window positions
containing the light pixel, we obtain essentially lower log-like-
lihood values [cf. (1)–(3)]. As a result, the log-likelihood image
will contain a dark spot of window size centered on the light
pixel. The minimum size of the spot is given by the search
window and increases in the case of larger calcifications cov-
ering several pixels. The size and darkness of the spot con-
tinuously depend on the size and contrast of the underlying
micro-calcification, respectively (cf. Fig. 4). A cluster of near
micro-calcifications could appear as inhomogeneous dark spot
of irregular form (cf. Figs. 1 and 2). In this sense each micro-
calcification is visualized in a way that continuously reflects the
quantitative features of the original finding.

D. Interpretation of Contour Lines

Comparing the original mammogram and the corresponding
log-likelihood image, we can see that even hardly visible details
and structures closely correlate in both images but the bound-
aries of different regions are emphasized. The tendency of the
local statistical model to create “contour lines” has a simple
theoretical reason. Multidimensional spaces are “sparse,” and,
therefore, the mixture components tend to be almost nonover-
lapping. For this reason, in the course of pixelwise evaluation
of the mammogram, the log-likelihood values are typ-
ically “dominated” by a single component of the mixture, which
is most adequate to the underlying region. Thus, different re-
gions are dominated by different components. A detailed nu-
merical observation shows that the change of dominating com-
ponent is accompanied by lower log-likelihood values. In this
way, “switching” of mixture components is responsible for the
arising dark contour lines at the boundaries of regions having
different textural properties.

Fig. 4. Detection of microcalcifications. Top: Enlarged part of the original
mammogram containing two microcalcifications. Bottom: Corresponding part
of the log-likelihood image. Both microcalcifications are displayed as dark
spots of window size.

The most apparent demonstration of this mechanism can be
seen at the margins of the breast region which are character-
ized by continuously decreasing gray levels (cf. Figs. 1 and 2).
The local statistical model describes the changing gray levels
by means of several different dominating components and cre-
ates separate contour lines as a by-product of the component
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switching process. We observe that, unlike iso-intensity con-
tours (cf., e.g., [32]), the contour lines produced by mixture
components should generally emphasize regions of similar tex-
tural properties.

The contour lines can be useful as a tool to distinguish mam-
mogram regions of different densities (cf. Fig. 5). The identifi-
cation of masses is especially of interest as one of the most im-
portant early signs of malignant lesions. Masses may be quite
subtle, and may have smooth boundaries and different shapes.
Detection and classification of masses is known to be more dif-
ficult than detection of microcalcifications as they often occur
in dense glandular tissue (cf., e.g., [7]). The contour lines may
help to solve this problem because they emphasize the shape of
masses which may be of diagnostic meaning (cf. Fig. 5).

The log-likelihood image emphasizes locations having sim-
ilar textural properties in all parts of the four-view mammogram
and, in this way, any asymmetry becomes well visible. For this
reason, the log-likelihood image can be helpful to evaluate pos-
sible contralateral findings (cf. [41]–[43]) or multifocal lesions
because regions having similar properties are easily identified
visually.

E. Model-Based Mammogram Segmentation

The CADe methods frequently make use of texture segmen-
tation approaches to distinguish different kinds of breast tissue
and facilitate the interpretation of mammogram (cf. [33]–[39]).
In this respect, the local statistical model also provides a theo-
retically well-justified solution, which is similar to [38] in some
respect. In particular, we can easily obtain an “oversegmented”
image by simply classifying pixels according to the maximum
conditional probabilities [cf. Appendix I and (6)]. By
using the over-segmented image as a starting point, we could
obtain a more rough segmentation in a way proposed in [40].
However, the log-likelihood image appears to be more informa-
tive than any result of this kind. The log-likelihood image shows
contour lines corresponding to segment boundaries but, in con-
trast to the segmented image, detailed textural information is
visible simultaneously.

F. Invariance With Respect to Gray-Level Transformation

In the log-likelihood image, the gray scale can be fixed
without information loss. In this paper, all log-likelihood
images have been obtained in the same way by fixing the
displayed gray-level interval to where

is the final log-likelihood criterion and is the standard
deviation of the displayed values of . Thus, the value
of the log-likelihood criterion (5) plays the role of a reference
point only but it may be useful as a global characteristic of the
mammogram.

In the literature, many different preprocessing approaches
have been proposed to increase the contrast of mammograms by
means of different gray-scale transforms (cf., e.g., [29]–[31]).
In the case of a local statistical model (1), such a gray-level
manipulation becomes partly superfluous because the log-like-
lihood image can be shown to be invariant with respect to
arbitrary linear transform of the gray scale. In particular, if
we assume a general linear transform of the gray scale of

the original mammogram, then the transformed data and pa-
rameters can be shown to satisfy the EM iteration equations,
and, therefore, the corresponding log-likelihood image of the
transformed data is identical (for proof, see Appendix I).

V. CONCLUDING REMARKS

We propose a new approach to the evaluation of screening
mammograms by means of local statistical texture models with
the aim to facilitate the identification of the suspicious areas.
The resulting log-likelihood image exactly correlates with the
original mammogram, maps the typicality and novelty of the
image and emphasizes regions of identical textural properties by
contour lines. In parallel comparison the log-likelihood image
may help to identify potential abnormalities in screening mam-
mograms.

There are different possibilities to modify the log-likelihood
image. The local data vector could include more sophisti-
cated features in order to describe explicitly the directional or
morphological properties of the window patch. Also, instead of
log-likelihood, we can use log-likelihood ratio with the product
of unconditional marginals in the denominator (cf. [23]). In this
form, the resulting image is more sensitive to structural irregu-
larities and probably more suitable to some types of malignant
lesions.

In the present form, the method does not include any de-
cision making but the log-likelihood image is well applicable
to generate additional explicit “black-box” decision informa-
tion. Roughly speaking, any untypical location of high novelty
could be marked by a prompt as a suspicious area. However, the
log-likelihood image alone seems to be more informative in this
respect since possible reasons of the generated prompt would be
usually well visible in full complexity.

The log-likelihood image is a purely statistical construct
based on the local statistical model without any specific relation
to screening mammography. Formally, the method can be
viewed as a new generally applicable principle of structure
visualization in medical imaging. Using textural information
the method may emphasize unusual locations and creates
artificial contour lines around image regions characterized by
different textural properties. In mammographic screening, it
may be helpful to identify malignant abnormalities as locations
of high novelty. Nevertheless, the diagnostic interpretation of
the log-likelihood images represents a new problem for which
the corresponding diagnostic experience can be accumulated
only in cooperation with radiologists. For this reason, we plan
to extend the set of illustrating high-resolution examples at our
website (http://www.utia.cas.cz/RO) and in the near future we
make our software freely available to interested professionals.

APPENDIX I
PROOF OF THE LOG-LIKELIHOOD IMAGE INVARIANCE

In view of standard calibration of mammograms, the invari-
ance of the log-likelihood image with respect to arbitrary linear
transform of gray levels is of importance. Logically, the in-
variance means that by using some linearly transformed gray
level data in EM algorithm we would obtain the same log-like-
lihood image. However, we cannot prove the invariance prop-
erty in this form because the parameter estimates obtained by
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Fig. 5. Left upper part displays a detail of the mammogram C-0016-1 (DDSM database [2]) with malignant mass having irregular shape and spiculated margins.
The right upper part contains the corresponding log-likelihood image combined with ground-true overlay file. The lower part of the image shows the malignant
mass in more detail.

EM algorithm may be starting-point dependent and, therefore,
not uniquely determined. We prove instead that if a linear trans-
form is applied, both to the data set and to some estimated
mixture parameters, then the transformed parameters also sat-
isfy the EM iteration equations.

In particular, let , , , , be the
mixture model parameters obtained by EM algorithm for the
data set , i.e., they satisfy the EM iteration equations

(6)

(7)

(8)

If we assume a general linear transform of the gray scale of the
original mammogram, then it can be shown that the transformed
data and parameters

(9)

(10)

also satisfy the EM iteration (6)–(8) and the corresponding log-
likelihood values differ only by a constant. Therefore, by fixing

the mean gray level, we obtain an identical log-likelihood image
of the transformed data.

By using (9) and (10), we can write

(11)

Further, we can show that the EM iteration (6)–(8) are satisfied
for the transformed data and parameters

(12)

(13)

(14)

The proof is complete since, by (11), the values ,
differ only by a constant which is eliminated by fixing

the mean gray level of the log-likelihood image.
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